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Abstract. A general theory is presented to derive the coarse-grained equations governing 
the macroscopic behaviour of sound-wave propagation in suspensions from the standpoint 
of statistical continuum mechanics. The expressions for effective physical properties are 
obtained. 

The resulting general expression for the effective sound-wave velocity is applied to 
acoustic wave propagations in bubbly fluid. It is shown that our result for the sound-wave 
velocity agrees well with experiment. We find that the basic equation for wave propagation 
in continuous random media does not apply to wave propagations in discrete random media 
(or suspensions). Our expressions for the effective viscosity and thermal conductivity agree 
with those for the effective viscosity and thermal conductivity in a dilute suspension in the 
dilute limit and are applied to more concentrated suspensions. 

1. Introduction 

In a study of sound-wave propagation in two-phase media (or suspensions), it is 
necessary to develop equations governing their mean field (van Wijingaarden 1972). 

A number of phenomenological attempts have so far been made to draw up 
equations governing the macroscopic behaviour of disperse systems. However, there 
are no consistent theories for such systems which are satisfactory from a statistical point 
of view. Wave propagation theory in continuous random media applies to problems 
such as the scattering of sound waves by turbulent gases, the scattering of radio waves by 
tropospheric turbulence and the twinkling of stellar images. Considerable progress has 
been made by the use of formal perturbation methods with Green functions (Frisch 
1968, Karal and Keller 1964, Howe 1971), but their applications to wave propagation 
in discrete random media (for example suspensions) have not been made. However, 
such formal methods have enjoyed considerable success in determining the effective 
thermal conductivity in suspensions (Beran 1968, Miller 1969, Hori 1977). 

Because of the difficulty of analysing equations governing sound-wave propagations 
in suspensions by Green functions, it is not useful to apply this method to wave 
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propagation. In this paper, a new renormalisation method, which is similar to the 
perturbation method with Green functions, is applied to the problem of sound-wave 
propagation in suspensions. 

If we consider suspensions as continua with variable physical properties, the 
governing equations will be stochastic differential equations with coefficients of random 
variables, because each phase has different values for the physical properties (Beran 
1968). The equations governing the macroscopic (or coarse-grained) behaviour of 
sound-wave propagation in two-phase mixtures can be obtained by means of ensemble 
averaging on stochastic differential equations. 

Ensemble averaging on equations can be replaced with the coarse graining of 
equations from the standpoint of statistical mechanics. Coarse graining is the elimina- 
tions of modes with high wavenumbers, which are comparable with the reciprocal of the 
size of the suspended particles, by looking at suspensions on a much larger scale than the 
size of the suspended particles. We consider that a sound wave with a wavelength much 
longer than the size of the suspended particles propagates in suspensions. 

Then, by means of coarse graining, we can reduce the governing equations to 
equations with low modes which describe the behaviour on a much larger scale than the 
size of the suspended particles. We call the resulting equations governing macroscopic 
behaviour (or coarse-grained behaviour) the coarse-grained equations of sound-wave 
propagation. 

This paper presents a method which gives coarse-grained equations for sound-wave 
propagations in two-phase media from the standpoint of statistical continuum 
mechanics. 

In 9 2, we derive a basic equation governing one-dimensional sound-wave pro- 
pagation in a random stack of slabs which consists of two phases. It is shown that the 
basic equation of wave propagation in discrete random media is different from the 
equation of wave propagation in continuous random media. The derivation of the 
equations governing three-dimensional sound-wave propagation in suspensions is 
given in 9 3.  These equations are derived by the introduction of dissipative effects 
(viscosity and thermal conduction). In 9 4, the procedure for coarse graining their 
equations is presented. 

Then coarse-grained equations are derived and effective physical properties are 
obtained. The sound-wave velocity of two-phase mixtures is discussed in 9 5.  It is 
shown that our result for the sound velocity in a bubbly fluid agrees with experiment. In 
9 6, our expressions for the effective viscosity and thermal conductivity are discussed. 

2. Equations governing one-dimensional sound-wave propagation 

As a fundamental step for the study of sound-wave propagation in suspensions, for 
simplicity we consider a random stack of slabs which consists of two phases. 

Suppose now that a small disturbance propagates in a two-phase random stack of 
slabs. For the purpose of describing the propagation of acoustic waves, we need to treat 
the linearised equations of motion. 

Then the linearised equations of mass conservation are given by 

(ap ’ la t )  + p L ( d ~ ’ / d x )  = 0 in one phase 

(ap ‘ la r )  +p,(du’/dx) = 0 in the other phase. 
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If mass flux is continuous across the interfaces of the slabs, then, combining equations 
(1) and (2), the mass conservation equation in the random stack is given by 

where the subscript 0 indicates the equilibrium state and primed quantities belong to 
small disturbances. 

The density of equilibrium state p o ( x )  is a random variable which has density pL in 
one phase and pe in the other. However, we note that the fluid in a slab cannot permeate 
the interfaces, and while the velocity and pressure must be continuous at the slab 
interfaces, the mass flux need not be. Therefore equation (3) is incorrect for sound- 
wave propagation in a two-phase random stack of slabs. 

The correct mass conservation equation combining equations ( 1 )  and (2) is given by 

(ap ’ /a f )  +po(x) (au ’ /ax)  = 0. (4) 

The linearised equation of momentum conservation is given by 

where 

The compressibility ( ( a p / ~ 3 p ) ~ ( x ) )  is also a random variable with ( a p / d ~ ) ~  in one phase 
and ( a p / 1 3 p ) ~  in the other. Equations (4) and ( 5 )  represent stochastic differential 
equations with coefficients of random variables. 

For the pressure p ’  we obtain from equations (4) and (5) that 

This equation gives a basic equation governing one-dimensional sound-wave pro- 
pagation in a two-phase random stack of slabs. For reasons of comparison with 
equation ( 6 ) ,  the equation which was derived by Howe (1971) in the statistical theory of 
sound-wave propagation in random media is given here: 

*#”) ( x)  Id’,’ 7 = 0 .  
at2 ap 0 ax (7) 

Equation (7) is derived using equation (3) in place of (1) .  Therefore (7) cannot be 
applied to wave propagation in suspensions although it gives a basic equation for wave 
propagation in continuous random media. We find that it is not justified to apply the 
basic equation for wave propagation in continuous random media to wave propagations 
in discrete random media such as suspensions. 

In equation (6 )  the density and the compressibility are random parameters, while in 
(7) only the sound-wave velocity is a random parameter. 

In § 5 we shall compare the effective sound velocity derived from equation ( 6 )  with 
the effective sound velocity from (7). It will be shown that there is a difference in the 
effective sound-wave velocities. 
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3. Equations governing three-dimensional sound-wave propagation in dissipative 
two-phase mixtures 

In non-dissipative mixtures, the normal velocity and the pressure must be continuous at 
the interfaces. These conditions may be satisfied easily in one-dimensional sound-wave 
propagation by a stack of slabs, but it is difficult to satisfy the condition in three- 
dimensional sound-wave propagation by two-phase mixtures. For the derivation of 
equations governing three-dimensional sound-wave propagation in suspensions, we 
need to consider the effect of dissipations. Hence for the introduction of dissipative 
effects, not only the normal velocity but also the tangential velocity at the interfaces 
must be continuous in three-dimensional sound-wave propagation. Then it is not 
difficult to derive a complete set of equations which satisfy this condition. 

Suppose now that deformable particles such as liquid drops are dispersed in the 
liquid so that they are statistically homogeneous and isotropic. Consider that a small 
disturbance propagates in this suspension. When we consider mixtures as continua with 
variable physical properties, physical quantities and currents such as velocity, pressure 
stress and heat flux must be continuous at the interface of the two phases. Under these 
conditions we obtain linearised equations governing three-dimensional sound-wave 
propagation in dissipative two-phase mixtures: 

(dp ’ /d t )  + po(x)(au : l a x i )  = 0 

a u ;  ap’ a [ 
pO(x)-+-=-  p ( x )  -+---a..’ 

at axi axi axi axi 3 ”ax, 

(8) 

(9) 
( a ~ ;  au’  2 a ~ ’ ) ]  

Here, the density in the equilibrium state po(x) ,  the specific heat (pc,)o(x),  (dp/dT) , (x ) ,  
(ap/ap)To(x) ,  the viscosity p (x) and thermal conductivity A (x) are random variables. 
These equations form a set of equations which govern the thermofluid dynamical 
behaviour of two phases in sound-wave propagation in dissipative two-phase mixtures. 
It will be difficult to analyse these equations directly because they are a set of stochastic 
equations. 

We mostly require information on the macroscopic behaviour of disperse systems. 
Hence we want to derive equations governing macroscopic behaviour (or coarse- 
grained behaviour) of sound-wave propagation from equations (8)-( 11). 

In the following we will apply a renormalisation method to derive the coarse- 
grained equations. 

4. Coarse graining of the basic equations 

Instead of averaging equations (8)-(111, we use a coarse-graining procedure, which 
corresponds to dealing with wave-numbers sufficiently small compared with the 
reciprocal of the size of the suspended particles. The equations governing the macro- 
scopic behaviour of a sound wave with a long wavelength can be obtained by coarse 
graining equations (8)-( 11). 



Coarse-grained equations in random media 1581 

where t (x)  is a normalised random variable which is equal to zero in a fluid phase and 
unity in dispersed phases. 

Let us define the Fourier components u t , k ( W )  of the velocity u j ( x ,  t )  as 

We define the Fourier component of the pressure and the temperature in a similar way. 
Also, let us define the Fourier components & of the random variable [(x) as 

Here V is the volume of mixtures. Substituting equations (14) and (16) into equations 
(8)-( 1 l), we obtain the equations as follows: 

i W P k  +iwSLTk +ik@Luj,k + v-'" iW(6,-6L)&,T(k-kf) 
k '  

--fkt(k, - kj)l(CLg- P L ) & u / , ( k - k ' )  (18) 

iWyLTk -imp, + v-'" iw(y,-YL)&k,T(k-k,) 
k '  

= -ALk2Tk - v-'I2 k,(k, - k:)(h,-A.)tk,T,k-k,,. (19) 
k '  

We note that the Fourier component (k takes a non-zero value at the wavenumber 
k = 0 and near the wavenumber k comparable with the reciprocal of the size of the 
suspended particles, because the random variable ((x) varies on scale of the size of the 
suspended particles. 
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Since we consider the macroscopic behaviour of sound-wave propagation, we take 
the limit Ikl<< 27r/a, where a represents the size of a suspended particle. Then the terms 
multiplied by &'(kt # 0) have high wavenumber k' compared with other terms, because 
the Fourier component &(k' # 0) takes a'non-zero value only near the wavenumber k' 
comparable with 27rla. 

We can distinguish between terms with low wavenumbers and terms with high 
wavenumbers. The terms with low wavenumber k consist of physical quantities 
referrable to macroscopic motion, while the terms with high wavenumber k' consist of 
physical quantities referrable to microscopic motion on the scale of the size of the 
dispersed particle. It is necessary to eliminate modes with high wavenumber. By 
iteration we shall derive the coarse-grained equations, which consist of physical 
quantities referrable to macroscopic motions. Because we eliminate modes with high 
wavenumber iteratively, we derive the formal solutions of ui,k, Tk from equations 
(1 7)-( 19): 

where we eliminated terms of O ( w )  in the limit w + 0, since the macroscopic behaviour 
of a sound wave with a long wavelength is slow compared with the fluctuation behaviour 
on a scale of the size of the suspended particles. 

Then, successive substitutions of equations (20) and ( 2 1 )  in terms multiplied by &' 
lead to 

k 

( k i - k : ) ( k i - k :  - k y ) ( k , - k :  - k ; ) k j  
( k  - k ' )2 (k  - k' - k'')2 

+ v - ~ ' ~  1 iw 
k' k" 

(k'#O) (k"#-k ' l  
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Because the particles are dispersed statistically homogeneously and isotropically in 
the liquid and the wavenumber k is sufficiently small compared with the reciprocal of 
the size of the suspended particles, the odd-order products of (k, - k:) will be approxi- 
mately zero and the even-order products of (k, - k:)  lead to the relationships 

Then, making use of these relations and the inverse transform of the tk, equations (20) 
and (21) result in simple forms with only low wavenumbers k as follows: 

Here we used the relationships 

where ( ) indicates the volume average, n being a positive integer. We find the 
coarse-grained version of equation (17): 

= l I (1 lP )  (31) 

where the asterisk indicates effective physical properties. 
We also find coarse-grained versions of equations (18) and (19) in a similar way: 
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where we have used the relation 

and dJ represents a volume concentration of dispersed phases. 

the macroscopic behaviour of sound-wave propagations in dissipative mixtures: 
Then, using the inverse transform, we obtain coarse-grained equations governing 

We note that the coefficients of equations (39)-(41) represent effective values of 
physical properties. We find that coefficients of terms with time derivatives in their 
equations have the simple volume average, but coefficients of terms with space 
derivatives do not. By means of this renormalisation method, we can obtain all the 
effective values of physical properties. Similarly, we can also obtain the coarse-grained 
version of equation (6), governing a one-dimensional sound-wave propagation in a 
two-phase random stack of slabs. Such calculations are given in the appendix. 

We note that the coarse-grained equations (39)-(41) do not have decaying plane- 
wave solutions for the mean field without dissipations, since we consider the macro- 
scopic behaviour of a sound wave with a wavelength much longer than the size of a 
suspended particle. If we want to derive decaying plane-wave solutions for the average 
fields without dissipations, we need to calculate the wavevector and frequency- 
dependent effective physical properties. Such effective physical properties could 
perhaps be calculated if we do not neglect the terms of O ( w )  in equations (20) and (21), 
but such calculations would be troublesome. For simplicity, we have treated the 
effective physical properties at zero wavevector and frequency. Next we shall derive the 
sound velocity from the coarse-grained equations (39)-(41) and compare our result 
with other work. 
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5. The velocity of sound in liquid-gas mixtures 

We shall consider the sound velocity in liquid-gas mixtures which are representative of 
sound-wave propagation in two-phase mixtures. 

The interesting phenomenon that the speed of sound in a bubbly fluid is lower than 
the speed of sound in pure gases is already known (van Wijingaarden 1972). 

The characteristics of the sound velocity have been explained by non-statistical 
theories since statistical treatments of derivatives of the sound velocity have not been 
successful. 

We will derive the sound velocity from the coarse-grained equations (39)--(4 1) 
governing the macroscopic behaviour of wave motions in suspensions. Because we 
obtain only the sound velocity, we neglect terms with the viscosity and the thermal 
conductivity in equations (40) and (41). 

We obtain the equation for the pressure p ‘  from the equations 

The c *  in equation (43) gives an expression for the sound velocity in suspensions. 
We apply equation (43) to a bubbly fluid. Neglecting pg/pL ,  ( p ~ , ) , / ( p c , ) ~  and 

((ap/aT),),/((ap/aT),,,),  with respect to unity, we obtain the approximate sound 
velocity 

This result agrees with the sound velocity derived from the non-statistical treatment 
under the assumption of isothermal behaviour (van Wijingaarden 1972). 

We described the acoustic wave propagation in a two-phase random stack of slabs in 
§ 2, and we give the coarse graining procedure for equations (6) and (7) in the appendix. 
The sound velocities derived from equations (6) and (7) are given by 

c*2 -Po/ [ lPL4(1-4)1 .  (44) 

We apply these expressions for the sound velocity to a random stack of slabs which 
consists of the liquid and gas phases. Neglecting p g / p L  with respect to unity and 
assuming isothermal behaviour for the gas, we obtain the approximate sound velocity 
from equation (45): 

Here, we need the assumption of isothermal behaviour for gases for one-dimensional 
sound-wave propagation in a non-dissipative mixture compounded of a two-phase 
random stack of slabs, but we do not need it for three-dimensional wave propagation in 
suspensions. 

The sound velocity from equation (46) is given by 

1 * 2  - 
C ( 4 )  - - 3  

c L* ( 1 - 4 ) + c i24 
where cL and c, are the sound velocities of liquid and gas respectively. 
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We note that the approximate sound velocities (44) and (47) cannot be applied in the 
limit #I = 0 and 4 = 1. In this limit we must apply the expressions (43) and (45). 

For a comparison between equations (6) and (7), we show the sound velocities (45) 
and (46) in figure 1. The sound velocity of equation (45) agrees with experiment (van 
Wijinhaarden 1972), but the sound velocity of equation (46) does not. Equation (7) 
cannot be applied to the sound-wave propagation in discrete random media. 

The sound velocity c* which is given by the relation (43) is a rigorous one derived 
from the standpoint of statistical continuum mechanics. 

d 

Figure 1. Plots of the effective sound-wave velocity c* against the volume fraction 4. The 
full and broken curves represent equations (45) and (46) respectively and the open circles 
indicate the data of Karplus (1961). 

6. Effective viscosity and effective thermal conductivity 

The coarse-grained equations governing the macroscopic behaviour of sound-wave 
propagation have been given in equations (39)-(41). 

This sound wave will be damped by the effect of dissipations such as effective 
viscosity and effective thermal conductivity. We think that effective transport 
coefficients in sound-wave propagation must agree with the effective transport 
coefficients of the other physical phenomena in suspensions, and therefore compare our 
effective transport coefficients with other results. 

First, we discuss the effective viscosity. Einstein’s formula for the effective viscosity 
in dilute suspensions of spherical particles is already known (Landau and Lifshitz 1960). 
Recently the coefficient of the 4* term has also been calculated for spheres by a variety 
of methods, often with rather different numerical results (Batchelor and Green 1972, 
Bedeaux et a1 1977). 
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We expand the expression (36) for the effective viscosity in a series for the purpose 
of comparison: 

2 3 125(PL - PP) 5(PL - CLP) 2 5 b L  - PPI - 
( 3 P L  + 2Pp) 

3 dJ3+ . . .  (49) 2 4* -= P* 1-  
P L  ( 3 P L  + 2Pp) dJ + ( 3 P L +  2CLP) 

where we use pL for the viscosity of the liquid phase and wP for the viscosity of 
suspended particles. The coefficient of the dJ term agrees with that for a dilute 
suspension of deformable particles. 

The expression found by Batchelor and Green for the effective viscosity in suspen- 
sions of rigid spherical particles is given by 

@ * / p L =  1 +$4 +(7.6F0.8)q52. (50)  

That found by Bedeaux et a1 is given by 

p,*/pL= 1 +;4 +4.84’. (51) 

In the series (49), the limit p, + CO yields 

W*/pL= 1 +$dJ +6*254*.  ( 5 2 )  

Our expression (36) for deformable particles will be applied not only to a suspension 
with low concentrations but also to more concentrated suspensions. 

Second, we discuss the effective thermal conductivity. The expression for the 
effective thermal conductivity to first order in 4 was found by Maxwell and recently to 
second order in 4 by Jeffrey (1973). 

We expand the expression (37) for the effective thermal conductivity in a series: 

where we use A L  for the thermal conductivity of a matrix and A, for the thermal 
conductivity of suspended particles. 

The coefficient of the dJ term agrees with that for a dilute suspension of spherical 
particles. For the limit A, + CO, we find a value of 9 for the numerical coefficient of the 
q52 term. Our result is about twice the value found by Jeffrey. 

We note that our results for the effective viscosity and the effective thermal 
conductivity cannot be applied to suspensions with high concentrations since there is a 
phase transition (cf percolation threshold) between 4 = 0 and dJ = 1 (Hori and 
Yonezawa 1977). 
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Appendix. 

In this appendix, we show the coarse-graining of equations (6) and (7) making use of the 
method in § 4. 



1588 T Nagata ti i 

First, we take the Fourier transform of equation (6) with respect to wavenumber k 
and frequency w : 

where we have used the following definitions: 

We derive the equation for Pk from equation (A.1): 

Then, we eliminate modes with high wavenumber by successive substitution of equation 
(A.2) in the terms multiplied by ( k ’  and we obtain the following equation: 

In the limit lkl<< lk’l, equation (A.3) results in the simple form 

-PL[ P - P  ((e>-(()’)+. . . ]k2Pk =o. (A.4) 
PL P L  

Using the inverse transform, we obtain the coarse-grained equation governing a 
mean field of the random stack of slabs: 

We obtain the coarse-grained version of equation (7) in a similar way: 
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